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Abstract

Indirect Time-of-Flight (ToF) imaging is widely applied
in practice for its superiorities on cost and spatial res-
olution. However, lower signal-to-noise ratio (SNR) of
measurement leads to larger error in ToF imaging, espe-
cially for imaging scenes with strong ambient light or long
distance. In this paper, we propose a Fisher-information
guided framework to jointly optimize the coding functions
(light modulation and sensor demodulation functions) and
the reconstruction network of iToF imaging, with the super-
vision of the proposed discriminative fisher loss. By intro-
ducing the differentiable modeling of physical imaging pro-
cess considering various real factors and constraints, e.g.,
light-falloff with distance, physical implementability of cod-
ing functions, etc., followed by a dual-branch depth recon-
struction neural network, the proposed method could learn
the optimal iToF imaging system in an end-to-end manner.
The effectiveness of the proposed method is extensively ver-
ified with both simulations and prototype experiments.

1. Introduction

Time-of-Flight (ToF) imaging can measure the depth of
scenes, and has been widely applied in autonomous driving,
face recognition, 3D sensing, augmented/virtual reality, efc.
In terms of working principle, ToF imaging can be divided
into direct ToF (dToF) and indirect ToF (iToF). Unlike dToF
imaging, which requires high precision pulsed light source
and sensors, iToF imaging encodes the depth information in
the phase of the continuously modulated light, and thus of
much lower cost and higher spatial resolution in practice.

Existing iToF imaging suffers from the low signal-to-
noise ratio (SNR) of measurements [13, 19], especially for
the cases with strong ambient light or large distance attenua-
tions. Adopting a higher energy light source, increasing the
exposure time, or capturing more measurements could help
to improve the SNR of detection, while at the expense of
increasing the power consumption or the acquisition time.
Recently, Su et al. [31] proposed a ToF reconstruction net-
work to improve the robustness to noise by post-processing,
without considering the influence of coding schemes. Gupta
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Figure 1. Overview of the proposed fisher information guided
learned iToF imaging framework. We propose a differential phys-
ical imaging model with learnable coding functions and guided
by the proposed discriminative fisher loss, the coding functions
and dual-branch depth reconstruction neural network could be op-
timized simultaneously and achieve state-of-the-art performance,
especially at low SNR scenarios.

et al. [8] and Gutierrez-Barragan et al. [9] designed a se-
ries of Hamilton coding functions that outperforms the com-
monly adopted sinusoid and square coding functions. How-
ever, due to the basic assumption of small noise, their per-
formance in low SNR scenarios is still limited.

In this paper, we propose an information theory guided
framework to jointly optimize the coding functions and the
reconstruction neural network of iToF imaging, with the
proposed discriminative fisher loss, as shown in Fig. 1.
Specifically, we formulate the iToF imaging process with a
differential physical imaging model with learnable coding
functions, taking the physical implementation constraints
into consideration. Followed by the imaging model, a dual-
branch depth reconstruction neural network is proposed and
the proposed method could optimize the entire iToF system
in an end-to-end manner. After training the iToF imaging
system, we build a prototype iToF imaging system and im-
plement the noise tolerant iToF imaging with the optimized
coding functions and the reconstruction network. Through



simulation and experimental comparisons with the state-of-
the-art methods, we demonstrate the superiority of the pro-
posed learned iToF imaging.

In particular, we make the following contributions:

* We propose a Fisher-information guided learning
framework to train the coding functions and the recon-
struction neural network of the iToF imaging system in
an end-to-end manner.

* We model the physical constraints of iToF imaging in
the forward module that could learn the physical im-
plementable modulation and demodulation functions.

* We constraint the coding functions with the proposed
discriminative fisher loss to maximize the information
about depth that could be encoded with the coding
functions of iToF imaging.

* We build a prototype iToF imaging system with the
learned optimal coding functions and verify the state-
of-the-art performance of the proposed iToF imaging
method, both in simulation and in real captured data.

2. Related Work

iToF imaging. Under high SNR scenarios, the conven-
tional iToF cameras [10, 20] that adopt sinusoid or square
functions as coding functions could achieve high accuracy.
However, the reconstruction error with conventional iToF
cameras increases as SNR decreases. Instead of improving
the sensor device performance, modifying the coding func-
tions is low-cost and easy to implement. Over the years,
a variety of works have been proposed to design differ-
ent coding functions for ToF imaging. Payne et al. [27]
proposed to reduce the duty cycle of sinusoid and square
functions to reduce measurement linearity error and sup-
press aliased harmonic components. Grootjans et al. [7],
Kadambi et al. [16] proposed pseudo random binary cod-
ing sequences to reduce crosstalk, address multi-path inter-
ference. Recently, the Hamiltonian coding functions were
proposed under the proposed coding space theory [8, 9],
which could largely improve the depth imaging accuracy
of iToF imaging. In the meantime, different corresponding
ToF depth reconstruction algorithms are proposed for depth
reconstruction, from the N-step phase-shift algorithm [10],
the multiple frequency sinusoid algorithm [28], the zero-
mean normalized cross-correlation (ZNCC) [22], to the cur-
rent deep learning based reconstruction algorithms [5, 31].
While with much progress in depth imaging, the depth ac-
curacy of existing iToF imaging schemes under low SNR is
still quite limited and we propose a data-driven optimiza-
tion framework based on deep neural networks that could
optimize the physical-implementable ToF coding functions,
especially under low SNR scenarios.

End-to-end imaging. With the development of deep
learning, the end-to-end methods of jointly optimizing
the imaging optics and reconstruction algorithms have

gained wide attention and shown promising improvement
in monocular depth estimation [3], adaptive lidar [2], high
dynamic range imaging [21, 32], extended depth-of-field
imaging [0, 30, 33], hyperspectral imaging [25], 3D local-
ization microscopy [24], efc. In ToF imaging, Chugunov
et al. [5] proposed to jointly learn a microlens amplitude
mask pattern and encoder-decoder network to correct fly-
ing pixels in the depth map. Inspired by these works, we
propose to optimize the coding functions of iToF imaging
together with depth reconstruction. Through establishing a
differentiable ToF imaging model with physical constraints,
the modulation and demodulation functions and the CNN-
based depth reconstruction algorithm can be jointly opti-
mized to realize high depth accuracy.

Fisher information guided imaging system design.
Fisher information measures the amount of information that
an observable random variable x carries about an unknown
parameter 6 of the distribution that models Y, so that it can
be used for imaging system design. For snapshot 3D mi-
croscopic imaging with high depth accuracy, Shechtman et
al. [29] proposed to optimize the pupil phase through max-
imizing the Fisher information. Chao et al. [4] proposed to
locate the single molecule with Fisher information for mi-
croscopic imaging under low light. Wu et al. [34] proposed
to optimize the phase mask with Fisher information, for pas-
sive single view depth estimation. Promising performance
has been shown with Fisher information, which has NOT
ever been explored in the field of iToF imaging.

Besides, since for iToF imaging, more than one mea-
surements are commonly required for depth extraction, we
further introduce a discrimination loss to maximize the dif-
ference between the coding functions. Through supervised
by the fisher guidance loss and the discrimination loss, the
coding functions can be learned to optimize the efficiency
in encoding the depth information.

3. Fisher Guided Learnable iToF Framework

We propose an information theory guided optimization
framework to optimize both the coding functions and the
reconstruction network of a computational iToF imaging
system jointly. By introducing the differentiable physical
process modeling considering various real factors and con-
straints followed by a dual-branch neural network, the pro-
posed method could optimize the entire iToF system in an
end-to-end way.

3.1. Fisher-information Guidance

Fisher information is usually used as the metric of the
amount of information included in the observation variables
about the unknown parameters. Without taking the complex
priors into consideration, an optimal measurement scheme
should be of largest Fisher information. Therefore, it is nat-
ural to use the Fisher information as the guidance for opti-
mizing the iToF system.



To derive the Fisher information of an iToF measurement
scheme, we need to investigate the signal and noise distri-
bution of the measurement scheme first. Commonly, the
measurements of iToF system X; on scene point p can be
divided as

Xl(p) = Sz(p) + Ndark + Nreadouta (1)

where S;(p) ~ P(s;(p)) is the depth dependent optical sig-
nal which follows the Poisson distribution, and s;(p) is the
expectation of S;(p) that depends on depth, i.e. s;(p) =
E[Si(p)]- Ndark ~ P(Aq) is the dark current noise with
Poisson distribution, and A4 is the expectation of the dark
current noise. Nyeadous ~ N'(0, 02) is Gaussian distributed
readout noise, where o, is the standard deviation of the
readout noise. In this paper, to simplify the following infer-
ence, we approximate the Poisson noise with additive Gaus-
sian noise of vary parameters, i.e.

Xi(p) ~ N (nilp), oi(p)),
pi(p) = si(p) + Aa,  0i(p) = V/si(p) + Aa + 02.

Note that here the dark noise and readout noise are inde-
pendent variables of depth z(p), which only depend on the
status of the detecting sensor. Typically, for each scene
point in iToF imaging, multiple measurements X (p) =
[z1(p), 22(p), ..., xn(p)] are captured with different combi-
nations of modulation and demodulation functions. [V is the
number of measurement of each scene point and the proba-
bility of detecting those measurements is
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The Fisher information of the observed variable X (p)
with respect to the unknown parameter depth z(p) is
2
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To derive the Fisher information, we first calculate the sec-
ond derivative of the log-likelihood of Eq. 3 with the chain
rule of partial derivation, i.e.
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Since z;(p) ~ N (u;i(p), o2(p)), i.e.

E{zi(p) — ni(p); z(p)} = 0, (6)
E{[z:(p) — i(p)*2(p)} = oi(p). @)

With Egs. 4-7, the Fisher information is
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Finally, we could derive the Fisher information of the ob-
served variable with respect to depth, i.e.
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3.2. Differential Physical Modeling

The measurement function s;(p) in Eq. 10 describes the
physical process of the light transmission from emitting to
receiving on scene point p. In this paper, we implement
this part with a differentiable physical model. Thus, the
computation of discriminative fisher loss, and the induced
optimization could be easily achieved. Assuming that the
emitted light is modulated by a modulation function M;(t),
the reflected signal of scene point p is,

Ri(p,t) = a(p)M;(t — ¢(p)) + Ba(p),  (11)

where a(p) is the amplitude coefficient due to the reflec-
tion of the scene, 3 is the ambient component due to other
light sources. ¢(p) is the distance dependent time delay of
light propagation, i.e., ¢(p) = 2@, where ¢ denotes the
speed of light. Considering the light intensity falls linearly
with the inverse of the square of distance, here we further
formulate the light fall-off Fyjof(2) in the measurement,

Ri(p.1) = Franon () o) Mi(t ~ 222 1 fa(p),

12)
where z is the depth of light propagation.
When the reflected signal R;(p, t) reaches the sensor, the
sensor demodulates R;(p,t) with the demodulation func-
tion D;(t) to derive the measurements,

T
si(p) = /0 Ri(p.t)Di(t)dt, (13)

where s;(p) contains three unknowns: a(p), 8, z(p), thus
commonly, it takes N > 3 measurements to reconstruct the
depth z(p).



Frequency decomposition for implementable bandwidth
limitation. In iToF imaging devices, the bandwidth of
the modulation and demodulation functions are limited by
the minimum bandwidth of the signal generator, the detec-
tor, and the multiplier. To incorporate the bandwidth con-
straints, the modulation/demodulation functions in Eq. 13
are formulated with the summation of a set of sinusoidal
waves with different frequency, below the bandwidth,

M;(t) = Z al” sin(2im fot + @) + bo,
Di(t) =Y af sin(2mifot + &) + ba,
i=1
where f denotes the fundamental frequency of the system,
fmax = nfo is the bandwidth limit of the signal, a}", af,
m d . .
;" and ¢f are the corresponding amplitude and phase cor-
respond to each frequency component f;, i.e. ify. by, and
bq are the corresponding DC components of the modulation
function M;(t) and demodulation function D;(t). With this
formulation, we could optimize the modulation and demod-
ulation function under the constraint of system bandwidth.

Normalization base physical constraints. In theory, the
higher the power of the light source, the higher the SNR
of measurement. While in practice, light sources of com-
mon iToF cameras are of limited output optical power in
consideration of both human eye safety standard and power
consumption constraint. In order to design the modulation
function of the driving light source, we add the constraint
of the maximum optical power E,

Jo M;(t)dt

R
where 7 is the period of M;(t) and D,(t). Besides, M;(t)
and D, (t) are required to be non-negative,

0 < M(t),
0<Dy(t) <1

Note that here, without loss of generality, we further con-
straint the amplitude of the demodulation function to be
smaller than 1. This constraint could be implemented
through adding normalization in the forward model before
calculation of Eq. 13, i.e. D;(t) = maﬁif:()?@)?i_“riﬂi{(gf(t)}'

Through setting a”, a?, ¢ and ¢? in Eq. 14 as learnable
parameters, and consistent with the constraints in Eq. 15
and Eq. 16, the modulation and demodulation function can
be optimized that meets the above physical constraints.

< FE, 15)

(16)

3.3. Depth Reconstruction Network

With the iToF imaging scheme, we could capture a set
of measurements I = [I1, I, ...., Iny]T (N > 3). To recon-
struct the depth from the measurements, we propose a dual-
branch multi-scale depth reconstruction network. As shown
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Figure 2. Dual-branch depth reconstruction network.

in Fig. 2, the network is mainly composed of two branches,
one is composed mainly with a pyramid multi-scale neural
network that could incorporate the spatial structure into the
reconstruction of depth, and the other branch is composed
of the pixel-based depth extraction neural network.

Spatial-structure Extraction Branch (SEB). To recon-
struct the depth with the sparsity prior of the depth map,
we construct a feature pyramid network to incorporate
the multi-scale structural information in the space domain.
Dense block is utilized as the feature encoding and decod-
ing blocks. As for the encoder, we utilized three feature
extraction blocks and the extracted multi-scale features are
fused to obtain features of different scales. The decoder is
constructed in a coarse-to-fine manner. First, we design the
decoder to predict the smallest-scale depth map, then utilize
bilinear interpolation for up-sampling, and integrate with
higher-scale fusion features to generate an enlarged reso-
lution depth map. This process is repeated to retrieve the
final depth map. In this way, the small-scale depth map
contains global information, and is continuously refined to
finally generate more detailed large-scale depth maps.

Pixel-wise Depth Regression Branch (PDRB). The
lower branch uses residual block structure with a convo-
lution kernel of 1x 1. Through the single-point direct map-
ping, the obtained depth map can retain the detailed features
of the scene. The pixel-wise depth regression branch func-
tions as a simulator of conventional depth extraction method
of iToF imaging, i.e. extract the depth of each pixel from the
corresponding measurements and guarantee the fast conver-
gence of the learning of the coding functions. Note that, as
shown in Fig. 2, for sufficient information fusion between
the two branches, we introduce feature concatenation from
the SEB branch to the PDRB.

The depth maps reconstructed with the two branches
are then weighted by the corresponding attention map and
added together to reconstruct the depth of the scene.



3.4. Loss Functions

Both the modulation/demodulation functions and the re-
construction network are learned by training with the dis-
criminative fisher loss composed of the fisher guidance loss,
fidelity loss and a multi-measurements discriminative func-
tion loss. Here we give more details about these losses.

Fisher Guidance Loss. Given the Fisher information of
meansurements s;(p) on depth z(p), we can derive a Fisher
Guidance loss as

Lﬁsher - - Zzﬁsher(p)- (17)

p
Fidelity Loss. To enforce the depth reconstruction fi-
delity, we proposed to minimize the mean absolute error
(MAE) between the depth of the SEB branch zsgp, the
single-point mapping branch zprpp, the depth of the ad-
dition of the two branches z, and the target depth zg, i.e.

1
Lriqetity = Z”ZSEB (p) = 2e:(P)[12 as)
p

+ [lzproB(P) = 26t (P) |1 + [[24(P) = 2a (P) |2

Multi-measurement discriminative loss. To further im-
prove the efficiency of different coding functions, and en-
force the difference between different coding functions,
here we adopt the Manhattan distance [14] as the discrimi-
native loss, i.e.

Law==2_ D

e At

llsi(p) —sj(@)li.  (19)

The proposed discriminative fisher loss is constructed as the
weighted combination of the fisher guidance loss, fidelity
loss and discriminative loss, i.e.

Lprt = Lridetity + M Lisher + A2 Ldis- (20)
4. Synthetic Assessment.
4.1. Implementation Details

Dataset.  The train and test data used in our end-to-end
network is the NYU-V2 dataset [23]. This dataset is com-
posed of video sequences from 464 indoor scenes, contain-
ing 1449 densely labeled pairs of aligned RGB and depth
images. The RGB of the scene corresponding to the depth
map, can be utilized to generate the albedo map of the scene
after intrinsic decomposition [15]. Without loss of general-
ity, we choose the R channel of RGB image after intrin-
sic decomposition as the albedo a(p) in Eq. 11. Similar
to [12, 17], we sample 1000 pairs of RGB-D images for
training and the remaining 449 pairs for testing. We set the
bandwidth limit according to the practical bandwidth that is
commonly adopted, specifically, we set 50 MHz as the fun-
damental frequency and 250 MHz as the bandwidth limit.

Incremental Training Method. In addition to the read-
out noise and dark noise of the image sensor, which we
assume as constant and choose to be 20 electrons in our
experiment, the SNR of iToF imaging is mainly determined
by the power of the incident light source, i.e. E, and the
power of the ambient light 5. In order to train the pro-
posed network to realize depth reconstruction over different
noise levels, we calibrate three typical noise scenarios with
the setting of E and S as (20000, 6000), (14000, 6000),
(10000, 6000), that could simulate physical experiments
and cover a wide range of large noise level, from low to
high. To train the proposed network in dealing with differ-
ent noise levels simultaneously, we adopt the incremental
training strategy [1]. The network is trained with input data
of different noise levels, from small to large, every other 10
epochs. When data of all noise levels are traversed, sam-
ples with random noise levels are generated and fed to the
network for the convergence of the network.

We adopt ADAM [18] as the optimizer, with an initial
learning rate of 0.01. The learning rate is linearly decayed
with a ratio of 0.7 every 10 epochs. A; and A2 were cho-
sen empirically to be le-4 and le-5 initially and decayed to
le-5 and le-6 after 10 epochs. Kaiming initialization [11]
is utilized for the learnable modulation and demodulation
functions. We implement the experiments on PyTorch [26]
platform with an NVIDIA GeForce RTX 2080 GPU.

4.2. Comparison with the State-of-the-art Methods.

To demonstrate the performance superiority, we com-
pare our method with the existing iToF imaging methods,
including the conventional sinusoid and square coding func-
tions with conventional phase shift (PS) algorithm [10], the
DeepToF method [31] and the recently proposed Hamilton
iToF imaging method [9]. Without loss of generality, our
method uses one modulation function and four demodula-
tion functions. Three different noisy scenarios are shown in
Fig. 3, from low noise level to high, and our method per-
forms the best. The qualitative results of different methods
are also shown in Tab. 1(a), and our method enables to re-
construct depth of the lowest mean squared error (MAE),
across different noise levels.

To further demonstrate the superiority of the learned cod-
ing functions, we compare our method with the other cod-
ing functions, including sinusoid, square, dual frequency
sinusoid (50 MHz and 200 MHz), practical Hamilton func-
tions [9], with the same reconstruction neural network, i.e.
the proposed depth reconstruction neural network. The
quantitative and qualitative results are shown in Fig. 4 and
Tab. 1(b). As can be seen, the learned coding function could
realize the best performance and the improvement is large
especially at high noise levels, further demonstrating the
noise robustness of the learned coding functions.

To demonstrate the efficiency of the proposed dual-
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Figure 3. Overall comparisons with other iToF methods, i.e. Sine/Square + PS algorithm [10], Hamilton [9] and Sine + DeepToF [31].

branch neural network with the existing deep learning based
ToF reconstruction network, i.e. DeepToF [3 1], and Mask-
ToF [5]. We utilize the same learned coding functions and
retrain these neural networks, the performance comparisons
are shown in Fig. 5 and Tab. 1(c). Through comparison, we
could demonstrate the effectiveness of the proposed dual-
branch depth reconstruction neural network.

4.3. Ablation Study

Reconstruction Network. We designed ablation experi-
ments to evaluate the proposed reconstruction network, as
shown in Tab. 2. Firstly, we test the effectiveness of the
proposed PDRB, which could help to improve the MAE
performance in addition to the utilization of spatial struc-
ture with SEB. Then we further demonstrate the effective-
ness of the proposed parallel structure with SEB and PDRB,
through training and testing upon a cascaded network with
PDRB and SEB, i.e. PDRB + SEB. Through comparing
with the method that only uses SEB or cascaded structure,
the depth reconstruction effectiveness of the proposed net-
work is demonstrated.

Discriminative Fisher Loss. In addition to the fidelity
loss, we propose the fisher guidance loss, in combination

(a) Overall Performance MAE (mm)
Sinusoid + PS [10] 181.192 | 244.679 | 314.793
Square + PS [10] 112.828 | 158.641 | 213.963
Hamilton [9] 97.265 | 148.463 | 208.339
DeepToF [31] 42.124 59.798 98.230
(b) Coding Function MAE (mm)
Sinusoid 25.024 43.438 85.957
Dual-freq Sinusoid 13.679 17.710 | 41.038
Square 23.231 40.731 73.994
Hamiltonian [9] 14.413 17.820 30.121
(c) Recovery Method MAE (mm)
MaskToF [5] 22.474 26.068 32.993
DeepToF [31] 23.858 34.076 79.862
Our method 12.857 13.763 18.264

Table 1. Quantitative comparison in terms of the overall perfor-
mance, coding functions, and reconstruction methods with respect
to three different noise settings from the 2nd to 4th column, i.e.
(E, B) equals (20000,6000), (14000,6000) and (10000,6000).

with the discriminative loss, which could greatly encour-
age the convergence in finding the optimal coding func-
tion and enables high quality depth precision. As shown in
Tab. 2, with the combination of Lggper and Lg;s, our method
obtains the highest depth accuracy. We further compare
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Figure 5. Comparison with other depth reconstruction networks,
i.e. DeepToF [31] and MaskToF [5]

the statistical distribution of depth error of the proposed
method with and without the two proposed loss functions,
i.e. Lggher and Lgjs. As in Fig. 6, with only the fidelity
loss, the depth error is much higher than the proposed loss
especially at higher depth range, further demonstrating the
effectiveness of the proposed fisher guidance.
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Figure 6. Ablation study of with (w/) and without (w/o) fisher-
information guidance loss and discriminative loss, of noise setting
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Ablation MAE (mm)
SEB 33.327 | 31.987 | 45.048
Cascaded Structure | 23.882 | 32.411 | 44.479
Lais + Ladetity 40.997 | 51.537 | 115.435
Lﬁsher + Lﬁdelity 64.291 73.966 143.629
Lgelity 24,990 | 24.119 | 28.818
Ours 12.857 | 13.763 | 18.264

Table 2. Quantitative Comparison of Ablation study of different
noise settings, the noise setting is the same as Tab. 1.

5. Physical Experiment Results.

Prototype system. To demonstrate our method with a
physical experiment, we built a prototype system that
can implement iToF imaging with arbitrary coding func-
tions. The learned modulation and demodulation functions
are generated by the function signal generator (DG5252,
Rigol). We adopt a 638nm laser diode with a maxi-
mum power of 200mw (L638P200, Thorlabs) as the light
source. With the bias-T coupling circuit (LDM56, Thor-
labs), the laser can be modulated by the learned modulation
function. We scan the scene with a galvo-mirror system
(GVSO012, Thorlabs). The reflected light is focused by a
lens (AF NIKKOR, Nikon) onto an avalanche photodiode
(APD430A, Thorlabs). The APD converts reflected light
into electrical signals. Then the converted signal is multi-
plied with the learned demodulation function with a mul-
tiplier (AD835, ADI), and the output is further amplified
(OPA847, TI) and low-pass filtered (EF110, Thorlabs). Fi-
nally, the analog signals are sampled, quantized and trans-
lated into digital values by ADC (ADS112C04, TI). The
scanning and acquisition of the system are controlled by the
Microcontroller (STM32F103, ST), as in Fig. 7.

Figure 7. Experimental system, (a)-(c) top, front, side views.
Experimental Results. Through adjusting the output
power of the light source and the additional ambient light
source power, we capture images over a large range of
noise levels. To qualitatively demonstrate the superiority of
the proposed method, we first capture images of the three
books, at depths 1.60 m, 1.90 m, and 2.20 m. As shown
in Fig. 8, the MAE of different methods is 10.79 cm, 4.23
cm, 7.06 cm, and 1.66 cm from left to right, and the depth
error of our method is the lowest, demonstrating the effec-

tiveness of the proposed method. We further conduct depth
imaging with different scenes under different noise levels as
shown in Fig. 8, the depth reconstruction results are noisy
due to the large noise, while the proposed method recovered
the depth with much less noise effect and elegant quality in
smoothness comparing with the state of the art methods.
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Figure 8. Performance comparisons in physical experiments.

6. Discussion

In this paper, complex lighting environment with varying
ambient light source distribution has not been considered in
our physical imaging model. However, with the proposed
information-guided iToF imaging framework, the ambient
light distribution could be directly modeled in the physical
model, and through rendering training dataset with different
complex ambient light distribution, the optimal iToF imag-
ing model for complex ambient light environment could be
learned end-to-end, we leave this work as our future work.

As for the on-chip implementation of our method, we
will explore the DDS chip (AD9954, ADI) or DAC +
FPGA, with the addition of a waveform processing circuit,
to implement learned coding functions.

7. Conclusion

In conclusion, we propose an information theory guided
framework to optimize the coding functions and the dual-
branch reconstruction network of iToF imaging jointly.
Specifically, we formulate the differential imaging model
with physical implementation constraints, and propose a
dual-branch deep neural network for depth reconstruction.
With the proposed discriminative fisher loss and end-to-end
network training, we could find the optimal coding func-
tions and reconstruction network under large noise. The
proposed method was demonstrated with extensive quali-
tative and quantitative results, and we further build a pro-
totype iToF imaging system and validate our method with
physical experiments.
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